TX packets dropped ratio too high-f5-all

TX packets dropped ratio too high-f5-all
0

TX packets dropped ratio too high-f5-all

Vendor: f5

OS: all

Description:
Indeni tracks the number of packets that had issues and alerts if the ratio is too high.

Remediation Steps:
Packet drops usually occur when the rate of packets transmitted is higher than the device ability to handle.

How does this work?
This script logs into the F5 unit through SSH and retrieves the status of all VLAN interfaces. In that output, it looks for the number of packets dropped on an interface.

Why is this important?
If outgoing packets are being dropped on a VLAN interface, it is important to be aware of it. This may be due to a high load on the unit, or another capacity issue. It is also common on an F5 to get a large amount of drops if the VLAN tag configuration on a trunk does not match the peer device.

Without Indeni how would you find this?
An administrator could log into the device through SSH and execute the command “ifconfig -a” to see the statistics of each VLAN interface.

f5-ifconfig

name: f5-ifconfig
description: Get vlan interface statistics and connected networks table
type: monitoring
monitoring_interval: 1 minute
requires:
    vendor: f5
    product: load-balancer
    linux-based: 'true'
    shell: bash
comments:
    network-interface-rx-packets:
        why: |
            Tracking the number of packets flowing through each network interface is important to identify potential issues, spikes in traffic, etc.
        how: |
            This alert logs into the F5 unit through the F5 iControl REST API and retrieves the metrics from all network interfaces. In that output, it looks for the number of packets received through the interface.
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-rx-dropped:
        why: |
            If incoming packets are being dropped on a network interface, it is important to be aware of it. This may be due to a high load on the unit, or another capacity issue.
        how: |
            This alert logs into the F5 unit through the F5 iControl REST API and retrieves the metrics from all network interfaces. In that output, it looks for the number of packets dropped on an interface.
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
    network-interface-tx-dropped:
        why: |
            If outgoing packets are being dropped on a VLAN interface, it is important to be aware of it. This may be due to a high load on the unit, or another capacity issue. It is also common on an F5 to get a large amount of drops if the VLAN tag configuration on a trunk does not match the peer device.
        how: |
            This script logs into the F5 unit through SSH and retrieves the status of all VLAN interfaces. In that output, it looks for the number of packets dropped on an interface.
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-rx-bytes:
        why: |
            Tracking the amount of data flowing through each VLAN interface is important to identify potential issues, spikes in traffic, etc.
        how: |
            An administrator could log into the device through SSH, entering TMSH and executing the command "show net vlan interfaces all-properties" to see the statistics of each VLAN interface.
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-tx-bytes:
        why: |
            Tracking the amount of data flowing through each VLAN interface is important to identify potential issues, spikes in traffic, etc.
        how: |
            This alert logs into the F5 unit through SSH and retrieves the status of all VLAN interfaces. In that output, it looks for the number of bytes transmitted through the interface.
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-mac:
        why: |
            To be able to search for MAC addresses in indeni, this data needs to be stored.
        how: |
            The state of the interface is retrieved by logging into the device through SSH and running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the mac address of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-state:
        why: |
            Interfaces in the "down" state could result in downtime or reduced redundancy.
        how: |
            The state of the interface is retrieved by logging into the device through SSH and running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the state of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-mtu:
        why: |
            The MTU sometimes needs to be adjusted. Storing this gives an administrator an easy way to view the MTU from a large number of devices, as well as identifying incorrectly set MTU.
        how: |
            The state of the interface is retrieved by logging into the device through SSH and running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the MTU of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-ipv4-address:
        why: |
            To be able to search for IP addresses in indeni, this data needs to be stored.
        how: |
            The state of the interface is retrieved by logging into the device through SSH and running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the IP address of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-ipv4-subnet:
        why: |
            To be able to search for IP addresses in indeni, this data needs to be stored.
        how: |
            The subnet of the interface is retrieved by running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the subnet of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-rx-overruns:
        why: |
            If the capacity of the interface is exceeded, the frame that is currently being  received is dropped and the overrun counter is incremented. It is important to track this in order to know if the capacity of an interface is sufficient.
        how: |
            The amount of receive overruns for the interface is retrieved by running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-rx-frame:
        why: |
            A high frame number means a lot of packages did not end on a 32bit/4 byte boundary.
        how: |
            The frame counter for the interface is retrieved by running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-tx-packets:
        why: |
            Tracking the number of packets flowing through each VLAN interface is important to identify potential issues, spikes in traffic, etc.
        how: |
            This alert logs into the F5 unit through SSH and retrieves the status of all VLAN interfaces. In that output, it looks for the number of packets transmitted through the interface.
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-tx-errors:
        why: |
            Transmit errors on an interface could indicate a problem with a cable or one of the involved interfaces.
        how: |
            The amount of transmit errors for the interface is retrieved by running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-tx-overruns:
        why: |
            If the capacity of the interface is exceeded, the frame that is currently being  received is dropped and the overrun counter is incremented. It is important to track this in order to know if the capacity of an interface is sufficient.
        how: |
            The amount of transmit overruns for the interface is retrieved by running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-tx-carrier:
        why: |
            A high carrier number could mean that the link is flapping.
        how: |
            The carrier counter for the interface is retrieved by running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-rx-errors:
        why: |
            Receive errors on an interface could indicate a problem with a cable, or one of the involved interfaces.
        how: |
            The amount of receive errors for the interface is retrieved by running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-admin-state:
        why: |
            If a network interface is set to be up (what's known as "admin up") but is actually down (a cable is not connected, the device on the other side is down, etc.) it is important to know.
        how: |
            This alert logs into the F5 device through SSH and retrieves the status of all network interfaces. In that output, it looks for interfaces that are set to be up, but are actually down.
        without-indeni: |
            An administrator could verify that interface admin state by logging into the device through SSH, and issuing the command "ifconfig -a".
        can-with-snmp: true
        can-with-syslog: true
steps:
-   run:
        type: SSH
        command: ifconfig -a
    parse:
        type: AWK
        file: ifconfig.parser.1.awk

f5-ifconfig

name: f5-ifconfig
description: Get vlan interface statistics and connected networks table
type: monitoring
monitoring_interval: 1 minute
requires:
    vendor: f5
    product: load-balancer
    linux-based: 'true'
    shell: bash
comments:
    network-interface-rx-packets:
        why: |
            Tracking the number of packets flowing through each network interface is important to identify potential issues, spikes in traffic, etc.
        how: |
            This alert logs into the F5 unit through the F5 iControl REST API and retrieves the metrics from all network interfaces. In that output, it looks for the number of packets received through the interface.
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-rx-dropped:
        why: |
            If incoming packets are being dropped on a network interface, it is important to be aware of it. This may be due to a high load on the unit, or another capacity issue.
        how: |
            This alert logs into the F5 unit through the F5 iControl REST API and retrieves the metrics from all network interfaces. In that output, it looks for the number of packets dropped on an interface.
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
    network-interface-tx-dropped:
        why: |
            If outgoing packets are being dropped on a VLAN interface, it is important to be aware of it. This may be due to a high load on the unit, or another capacity issue. It is also common on an F5 to get a large amount of drops if the VLAN tag configuration on a trunk does not match the peer device.
        how: |
            This script logs into the F5 unit through SSH and retrieves the status of all VLAN interfaces. In that output, it looks for the number of packets dropped on an interface.
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-rx-bytes:
        why: |
            Tracking the amount of data flowing through each VLAN interface is important to identify potential issues, spikes in traffic, etc.
        how: |
            An administrator could log into the device through SSH, entering TMSH and executing the command "show net vlan interfaces all-properties" to see the statistics of each VLAN interface.
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-tx-bytes:
        why: |
            Tracking the amount of data flowing through each VLAN interface is important to identify potential issues, spikes in traffic, etc.
        how: |
            This alert logs into the F5 unit through SSH and retrieves the status of all VLAN interfaces. In that output, it looks for the number of bytes transmitted through the interface.
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-mac:
        why: |
            To be able to search for MAC addresses in indeni, this data needs to be stored.
        how: |
            The state of the interface is retrieved by logging into the device through SSH and running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the mac address of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-state:
        why: |
            Interfaces in the "down" state could result in downtime or reduced redundancy.
        how: |
            The state of the interface is retrieved by logging into the device through SSH and running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the state of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-mtu:
        why: |
            The MTU sometimes needs to be adjusted. Storing this gives an administrator an easy way to view the MTU from a large number of devices, as well as identifying incorrectly set MTU.
        how: |
            The state of the interface is retrieved by logging into the device through SSH and running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the MTU of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-ipv4-address:
        why: |
            To be able to search for IP addresses in indeni, this data needs to be stored.
        how: |
            The state of the interface is retrieved by logging into the device through SSH and running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the IP address of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-ipv4-subnet:
        why: |
            To be able to search for IP addresses in indeni, this data needs to be stored.
        how: |
            The subnet of the interface is retrieved by running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the subnet of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-rx-overruns:
        why: |
            If the capacity of the interface is exceeded, the frame that is currently being  received is dropped and the overrun counter is incremented. It is important to track this in order to know if the capacity of an interface is sufficient.
        how: |
            The amount of receive overruns for the interface is retrieved by running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-rx-frame:
        why: |
            A high frame number means a lot of packages did not end on a 32bit/4 byte boundary.
        how: |
            The frame counter for the interface is retrieved by running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-tx-packets:
        why: |
            Tracking the number of packets flowing through each VLAN interface is important to identify potential issues, spikes in traffic, etc.
        how: |
            This alert logs into the F5 unit through SSH and retrieves the status of all VLAN interfaces. In that output, it looks for the number of packets transmitted through the interface.
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-tx-errors:
        why: |
            Transmit errors on an interface could indicate a problem with a cable or one of the involved interfaces.
        how: |
            The amount of transmit errors for the interface is retrieved by running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-tx-overruns:
        why: |
            If the capacity of the interface is exceeded, the frame that is currently being  received is dropped and the overrun counter is incremented. It is important to track this in order to know if the capacity of an interface is sufficient.
        how: |
            The amount of transmit overruns for the interface is retrieved by running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-tx-carrier:
        why: |
            A high carrier number could mean that the link is flapping.
        how: |
            The carrier counter for the interface is retrieved by running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-rx-errors:
        why: |
            Receive errors on an interface could indicate a problem with a cable, or one of the involved interfaces.
        how: |
            The amount of receive errors for the interface is retrieved by running "ifconfig -a".
        without-indeni: |
            An administrator could log into the device through SSH and execute the command "ifconfig -a" to see the statistics of each VLAN interface.
        can-with-snmp: true
        can-with-syslog: false
    network-interface-admin-state:
        why: |
            If a network interface is set to be up (what's known as "admin up") but is actually down (a cable is not connected, the device on the other side is down, etc.) it is important to know.
        how: |
            This alert logs into the F5 device through SSH and retrieves the status of all network interfaces. In that output, it looks for interfaces that are set to be up, but are actually down.
        without-indeni: |
            An administrator could verify that interface admin state by logging into the device through SSH, and issuing the command "ifconfig -a".
        can-with-snmp: true
        can-with-syslog: true
steps:
-   run:
        type: SSH
        command: ifconfig -a
    parse:
        type: AWK
        file: ifconfig.parser.1.awk

cross_vendor_tx_drop

// Deprecation warning : Scala template-based rules are deprecated. Please use YAML format rules instead.

package com.indeni.server.rules.library.templatebased.crossvendor

import com.indeni.server.rules.RuleContext
import com.indeni.server.rules.library.templates.NearingCapacityWithItemsTemplateRule
import com.indeni.server.rules.RemediationStepCondition

/**
  *
  */
case class CrossVendorTxDrop() extends NearingCapacityWithItemsTemplateRule(
  ruleName = "cross_vendor_tx_drop",
  ruleFriendlyName = "All Devices: TX packets dropped ratio too high",
  ruleDescription = "Indeni tracks the number of packets that had issues and alerts if the ratio is too high.",
  usageMetricName = "network-interface-tx-dropped",
  limitMetricName = "network-interface-tx-packets",
  applicableMetricTag = "name",
  threshold = 0.5,
  minimumValueToAlert = 100.0, // We don't want to alert if the number of packets is really low
  alertDescription = "Some network interfaces and ports are experiencing a high drop rate. Review the ports below.",
  alertItemDescriptionFormat = "%.0f dropped packets identified out of a total of %.0f transmitted.",
  baseRemediationText = "Packet drops usually occur when the rate of packets transmitted is higher than the device ability to handle.",
  alertItemsHeader = "Affected Ports")(
  RemediationStepCondition.VENDOR_CISCO ->
    """|
       |1. Run the "show interface" command to review the interface counters and the bitrate. Consider to configure the "load-interval 30" interface sub command to improve the accuracy of the interface measurements. Check for traffic bursts and high traffic utilization.
       |2. Use the "show hardware rate-limit" NX-OS command (if supported) to determine if packets are being dropped because of a rate limit.
       |3. Execute the "show policy-map interface control-plane" NX-OS command to determine if packets are being dropped because of a QoS policy.
       |4. Use the "show hardware internal statistics rates" to determine if packets are being dropped by the hardware.
       |5. Run the "show hardware internal statistics pktflow all" NX-OS command to display per ASIC statistics, including packets into and out of the ASIC. This command helps to identify where packet loss is occurring.
    """.stripMargin,
  RemediationStepCondition.VENDOR_JUNIPER ->
    """|1. Run the “show interface extensive” command to review the interface statistics.
       |2. Check for packet drops and input/output traffic rate.
       |3. Run the “show class-of-service interface x/x/x detail"  to determine any QoS policy applied to interface which may cause packet drops.
       |4. If the interface is saturated, the number of packets dropped by the is indicated by the input queue of the I/O Manager ASIC. This number increments once for every packet that is dropped by the ASIC's RED mechanism.
       |5. Review the following article on Juniper tech support site: <a target="_blank" href="https://www.juniper.net/documentation/en_US/junos/topics/concept/using-show-commands-for-packet-drops.html">Understanding Dropped Packets and Untransmitted Traffic Using show Commands</a>
       |6. If the problem persists, contact the Juniper Networks Technical Assistance Center (JTAC)""".stripMargin,
  RemediationStepCondition.VENDOR_FORTINET ->
    """
       |1. Run "diag hardware deviceinfo nic <interface>" command to display a list of hardware related error names and values. Review  the next link for more details: http://help.fortinet.com/fos50hlp/54/Content/FortiOS/fortigate-toubleshooting-54/troubleshooting_tools.htm
       |2. Run command "fnsysctl cat /proc/net/dev" to get a summary of the interface statistics.
       |3. Check for speed and duplex mismatch in the interface settings on both sides of a cable, and check for a damaged cable. Review the next link for more info: http://kb.fortinet.com/kb/documentLink.do?externalID=10653""".stripMargin
)